| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf2lem | GIF version | ||
| Description: Lemma for repizf2 3936. If we have a function-like proposition which provides at most one value of 𝑦 for each 𝑥 in a set 𝑤, we can change "at most one" to "exactly one" by restricting the values of 𝑥 to those values for which the proposition provides a value of 𝑦. (Contributed by Jim Kingdon, 7-Sep-2018.) |
| Ref | Expression |
|---|---|
| repizf2lem | ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 1945 | . . . 4 ⊢ (∃*𝑦𝜑 ↔ (∃𝑦𝜑 → ∃!𝑦𝜑)) | |
| 2 | 1 | imbi2i 224 | . . 3 ⊢ ((𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
| 3 | 2 | albii 1399 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
| 4 | df-ral 2353 | . 2 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → ∃*𝑦𝜑)) | |
| 5 | df-ral 2353 | . . 3 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑)) | |
| 6 | rabid 2529 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} ↔ (𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑)) | |
| 7 | 6 | imbi1i 236 | . . . . 5 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑)) |
| 8 | impexp 259 | . . . . 5 ⊢ (((𝑥 ∈ 𝑤 ∧ ∃𝑦𝜑) → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) | |
| 9 | 7, 8 | bitri 182 | . . . 4 ⊢ ((𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ (𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
| 10 | 9 | albii 1399 | . . 3 ⊢ (∀𝑥(𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑} → ∃!𝑦𝜑) ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
| 11 | 5, 10 | bitri 182 | . 2 ⊢ (∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑 ↔ ∀𝑥(𝑥 ∈ 𝑤 → (∃𝑦𝜑 → ∃!𝑦𝜑))) |
| 12 | 3, 4, 11 | 3bitr4i 210 | 1 ⊢ (∀𝑥 ∈ 𝑤 ∃*𝑦𝜑 ↔ ∀𝑥 ∈ {𝑥 ∈ 𝑤 ∣ ∃𝑦𝜑}∃!𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∈ wcel 1433 ∃!weu 1941 ∃*wmo 1942 ∀wral 2348 {crab 2352 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-rab 2357 |
| This theorem is referenced by: repizf2 3936 |
| Copyright terms: Public domain | W3C validator |