| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > repizf2lem | Unicode version | ||
| Description: Lemma for repizf2 3936. If we have a function-like proposition
which
provides at most one value of |
| Ref | Expression |
|---|---|
| repizf2lem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 1945 |
. . . 4
| |
| 2 | 1 | imbi2i 224 |
. . 3
|
| 3 | 2 | albii 1399 |
. 2
|
| 4 | df-ral 2353 |
. 2
| |
| 5 | df-ral 2353 |
. . 3
| |
| 6 | rabid 2529 |
. . . . . 6
| |
| 7 | 6 | imbi1i 236 |
. . . . 5
|
| 8 | impexp 259 |
. . . . 5
| |
| 9 | 7, 8 | bitri 182 |
. . . 4
|
| 10 | 9 | albii 1399 |
. . 3
|
| 11 | 5, 10 | bitri 182 |
. 2
|
| 12 | 3, 4, 11 | 3bitr4i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-rab 2357 |
| This theorem is referenced by: repizf2 3936 |
| Copyright terms: Public domain | W3C validator |