| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resss | GIF version | ||
| Description: A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| resss | ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4375 | . 2 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 2 | inss1 3186 | . 2 ⊢ (𝐴 ∩ (𝐵 × V)) ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3029 | 1 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: Vcvv 2601 ∩ cin 2972 ⊆ wss 2973 × cxp 4361 ↾ cres 4365 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-res 4375 |
| This theorem is referenced by: relssres 4666 resexg 4668 iss 4674 relresfld 4867 relcoi1 4869 funres 4961 funres11 4991 funcnvres 4992 2elresin 5030 fssres 5086 foimacnv 5164 tposss 5884 dftpos4 5901 smores 5930 smores2 5932 |
| Copyright terms: Public domain | W3C validator |