![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relssres | GIF version |
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.) |
Ref | Expression |
---|---|
relssres | ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 107 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → Rel 𝐴) | |
2 | vex 2604 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
3 | vex 2604 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opeldm 4556 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | ssel 2993 | . . . . . . . 8 ⊢ (dom 𝐴 ⊆ 𝐵 → (𝑥 ∈ dom 𝐴 → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | syl5 32 | . . . . . . 7 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
7 | 6 | ancld 318 | . . . . . 6 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
8 | 3 | opelres 4635 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
9 | 7, 8 | syl6ibr 160 | . . . . 5 ⊢ (dom 𝐴 ⊆ 𝐵 → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
10 | 9 | adantl 271 | . . . 4 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ (𝐴 ↾ 𝐵))) |
11 | 1, 10 | relssdv 4450 | . . 3 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → 𝐴 ⊆ (𝐴 ↾ 𝐵)) |
12 | resss 4653 | . . 3 ⊢ (𝐴 ↾ 𝐵) ⊆ 𝐴 | |
13 | 11, 12 | jctil 305 | . 2 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) |
14 | eqss 3014 | . 2 ⊢ ((𝐴 ↾ 𝐵) = 𝐴 ↔ ((𝐴 ↾ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ (𝐴 ↾ 𝐵))) | |
15 | 13, 14 | sylibr 132 | 1 ⊢ ((Rel 𝐴 ∧ dom 𝐴 ⊆ 𝐵) → (𝐴 ↾ 𝐵) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ⊆ wss 2973 〈cop 3401 dom cdm 4363 ↾ cres 4365 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-dm 4373 df-res 4375 |
This theorem is referenced by: resdm 4667 resid 4682 fnresdm 5028 f1ompt 5341 |
Copyright terms: Public domain | W3C validator |