ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b GIF version

Theorem rexcom4b 2624
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1 𝐵 ∈ V
Assertion
Ref Expression
rexcom4b (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2623 . 2 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
2 rexcom4b.1 . . . . 5 𝐵 ∈ V
32isseti 2607 . . . 4 𝑥 𝑥 = 𝐵
43biantru 296 . . 3 (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
54rexbii 2373 . 2 (∃𝑦𝐴 𝜑 ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
61, 5bitr4i 185 1 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  wrex 2349  Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator