ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoim GIF version

Theorem rmoim 2791
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoim (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Proof of Theorem rmoim
StepHypRef Expression
1 df-ral 2353 . . 3 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
2 imdistan 432 . . . 4 ((𝑥𝐴 → (𝜑𝜓)) ↔ ((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
32albii 1399 . . 3 (∀𝑥(𝑥𝐴 → (𝜑𝜓)) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
41, 3bitri 182 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)))
5 moim 2005 . . 3 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥(𝑥𝐴𝜓) → ∃*𝑥(𝑥𝐴𝜑)))
6 df-rmo 2356 . . 3 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
7 df-rmo 2356 . . 3 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
85, 6, 73imtr4g 203 . 2 (∀𝑥((𝑥𝐴𝜑) → (𝑥𝐴𝜓)) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
94, 8sylbi 119 1 (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282  wcel 1433  ∃*wmo 1942  wral 2348  ∃*wrmo 2351
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-ral 2353  df-rmo 2356
This theorem is referenced by:  rmoimia  2792  disjss2  3769
  Copyright terms: Public domain W3C validator