| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moim | GIF version | ||
| Description: "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
| Ref | Expression |
|---|---|
| moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1474 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝜓) | |
| 2 | ax-4 1440 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 3 | spsbim 1764 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 4 | 2, 3 | anim12d 328 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝜓) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) |
| 5 | 4 | imim1d 74 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 6 | 5 | alimdv 1800 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 7 | 1, 6 | alimd 1454 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) |
| 8 | ax-17 1459 | . . 3 ⊢ (𝜓 → ∀𝑦𝜓) | |
| 9 | 8 | mo3h 1994 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
| 10 | ax-17 1459 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 11 | 10 | mo3h 1994 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) |
| 12 | 7, 9, 11 | 3imtr4g 203 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 [wsb 1685 ∃*wmo 1942 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 |
| This theorem is referenced by: moimi 2006 euimmo 2008 moexexdc 2025 euexex 2026 rmoim 2791 rmoimi2 2793 disjss1 3772 reusv1 4208 funmo 4937 |
| Copyright terms: Public domain | W3C validator |