![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc3ev | GIF version |
Description: 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.) |
Ref | Expression |
---|---|
rspc3v.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
rspc3v.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
rspc3v.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc3ev | ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 941 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐴 ∈ 𝑅) | |
2 | simpl2 942 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → 𝐵 ∈ 𝑆) | |
3 | rspc3v.3 | . . . 4 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) | |
4 | 3 | rspcev 2701 | . . 3 ⊢ ((𝐶 ∈ 𝑇 ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
5 | 4 | 3ad2antl3 1102 | . 2 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑧 ∈ 𝑇 𝜃) |
6 | rspc3v.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
7 | 6 | rexbidv 2369 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑧 ∈ 𝑇 𝜑 ↔ ∃𝑧 ∈ 𝑇 𝜒)) |
8 | rspc3v.2 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
9 | 8 | rexbidv 2369 | . . 3 ⊢ (𝑦 = 𝐵 → (∃𝑧 ∈ 𝑇 𝜒 ↔ ∃𝑧 ∈ 𝑇 𝜃)) |
10 | 7, 9 | rspc2ev 2715 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∃𝑧 ∈ 𝑇 𝜃) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
11 | 1, 2, 5, 10 | syl3anc 1169 | 1 ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |