| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspec2 | GIF version | ||
| Description: Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.) |
| Ref | Expression |
|---|---|
| rspec2.1 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
| Ref | Expression |
|---|---|
| rspec2 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspec2.1 | . . 3 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 | |
| 2 | 1 | rspec 2415 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
| 3 | 2 | r19.21bi 2449 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-ral 2353 |
| This theorem is referenced by: rspec3 2451 ordtriexmid 4265 onsucsssucexmid 4270 |
| Copyright terms: Public domain | W3C validator |