![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb6rf | GIF version |
Description: Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
sb5rf.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
sb6rf | ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5rf.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | sbequ1 1691 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
3 | 2 | equcoms 1634 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 → [𝑦 / 𝑥]𝜑)) |
4 | 3 | com12 30 | . . 3 ⊢ (𝜑 → (𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) |
5 | 1, 4 | alrimih 1398 | . 2 ⊢ (𝜑 → ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) |
6 | sb2 1690 | . . 3 ⊢ (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑) → [𝑥 / 𝑦][𝑦 / 𝑥]𝜑) | |
7 | 1 | sbid2h 1770 | . . 3 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑 ↔ 𝜑) |
8 | 6, 7 | sylib 120 | . 2 ⊢ (∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑) → 𝜑) |
9 | 5, 8 | impbii 124 | 1 ⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → [𝑦 / 𝑥]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-sb 1686 |
This theorem is referenced by: 2sb6rf 1907 eu1 1966 |
Copyright terms: Public domain | W3C validator |