ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel21v GIF version

Theorem sbcel21v 2878
Description: Class substitution into a membership relation. One direction of sbcel2gv 2877 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 2823 . 2 ([𝐵 / 𝑥]𝐴𝑥𝐵 ∈ V)
2 sbcel2gv 2877 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
32biimpd 142 . 2 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
41, 3mpcom 36 1 ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  Vcvv 2601  [wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator