| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbid | GIF version | ||
| Description: An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbid | ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equid 1629 | . . 3 ⊢ 𝑥 = 𝑥 | |
| 2 | sbequ12 1694 | . . 3 ⊢ (𝑥 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 7 | . 2 ⊢ (𝜑 ↔ [𝑥 / 𝑥]𝜑) |
| 4 | 3 | bicomi 130 | 1 ⊢ ([𝑥 / 𝑥]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: abid 2069 sbceq1a 2824 sbcid 2830 |
| Copyright terms: Public domain | W3C validator |