| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbid2v | GIF version | ||
| Description: An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbid2v | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1459 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | 1 | sbid2h 1770 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 103 [wsb 1685 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 |
| This theorem is referenced by: bdph 10641 |
| Copyright terms: Public domain | W3C validator |