![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbrbif | GIF version |
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
sbrbif.1 | ⊢ (𝜒 → ∀𝑥𝜒) |
sbrbif.2 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbrbif | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbrbif.2 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
2 | 1 | sbrbis 1876 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒)) |
3 | sbrbif.1 | . . . 4 ⊢ (𝜒 → ∀𝑥𝜒) | |
4 | 3 | sbh 1699 | . . 3 ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜒) |
5 | 4 | bibi2i 225 | . 2 ⊢ ((𝜓 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ 𝜒)) |
6 | 2, 5 | bitri 182 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 ∀wal 1282 [wsb 1685 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |