ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbrbis GIF version

Theorem sbrbis 1876
Description: Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
Hypothesis
Ref Expression
sbrbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sbrbis ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))

Proof of Theorem sbrbis
StepHypRef Expression
1 sbbi 1874 . 2 ([𝑦 / 𝑥](𝜑𝜒) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒))
2 sbrbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi1i 226 . 2 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
41, 3bitri 182 1 ([𝑦 / 𝑥](𝜑𝜒) ↔ (𝜓 ↔ [𝑦 / 𝑥]𝜒))
Colors of variables: wff set class
Syntax hints:  wb 103  [wsb 1685
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686
This theorem is referenced by:  sbrbif  1877  sbabel  2244
  Copyright terms: Public domain W3C validator