![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snmg | GIF version |
Description: The singleton of a set is inhabited. (Contributed by Jim Kingdon, 11-Aug-2018.) |
Ref | Expression |
---|---|
snmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snidg 3423 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
2 | elex2 2615 | . 2 ⊢ (𝐴 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴}) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1421 ∈ wcel 1433 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-sn 3404 |
This theorem is referenced by: snm 3510 prmg 3511 xpimasn 4789 1stconst 5862 2ndconst 5863 |
Copyright terms: Public domain | W3C validator |