ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssdisj GIF version

Theorem ssdisj 3300
Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
ssdisj ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)

Proof of Theorem ssdisj
StepHypRef Expression
1 ss0b 3283 . . . 4 ((𝐵𝐶) ⊆ ∅ ↔ (𝐵𝐶) = ∅)
2 ssrin 3191 . . . . 5 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
3 sstr2 3006 . . . . 5 ((𝐴𝐶) ⊆ (𝐵𝐶) → ((𝐵𝐶) ⊆ ∅ → (𝐴𝐶) ⊆ ∅))
42, 3syl 14 . . . 4 (𝐴𝐵 → ((𝐵𝐶) ⊆ ∅ → (𝐴𝐶) ⊆ ∅))
51, 4syl5bir 151 . . 3 (𝐴𝐵 → ((𝐵𝐶) = ∅ → (𝐴𝐶) ⊆ ∅))
65imp 122 . 2 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) ⊆ ∅)
7 ss0 3284 . 2 ((𝐴𝐶) ⊆ ∅ → (𝐴𝐶) = ∅)
86, 7syl 14 1 ((𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐴𝐶) = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  cin 2972  wss 2973  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252
This theorem is referenced by:  djudisj  4770  fimacnvdisj  5094
  Copyright terms: Public domain W3C validator