ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssundifim GIF version

Theorem ssundifim 3326
Description: A consequence of inclusion in the union of two classes. In classical logic this would be a biconditional. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
ssundifim (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem ssundifim
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm5.6r 869 . . . 4 ((𝑥𝐴 → (𝑥𝐵𝑥𝐶)) → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
2 elun 3113 . . . . 5 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32imbi2i 224 . . . 4 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 → (𝑥𝐵𝑥𝐶)))
4 eldif 2982 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
54imbi1i 236 . . . 4 ((𝑥 ∈ (𝐴𝐵) → 𝑥𝐶) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → 𝑥𝐶))
61, 3, 53imtr4i 199 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) → (𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
76alimi 1384 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)) → ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
8 dfss2 2988 . 2 (𝐴 ⊆ (𝐵𝐶) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐵𝐶)))
9 dfss2 2988 . 2 ((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴𝐵) → 𝑥𝐶))
107, 8, 93imtr4i 199 1 (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  wal 1282  wcel 1433  cdif 2970  cun 2971  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator