![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5sseq | GIF version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
syl5sseq.1 | ⊢ 𝐵 ⊆ 𝐴 |
syl5sseq.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
syl5sseq | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5sseq.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | syl5sseq.1 | . 2 ⊢ 𝐵 ⊆ 𝐴 | |
3 | sseq2 3021 | . . 3 ⊢ (𝐴 = 𝐶 → (𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶)) | |
4 | 3 | biimpa 290 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐶) |
5 | 1, 2, 4 | sylancl 404 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1284 ⊆ wss 2973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 |
This theorem is referenced by: fndmdif 5293 fneqeql2 5297 fconst4m 5402 f1opw2 5726 ecss 6170 fopwdom 6333 phplem2 6339 nn0supp 8340 monoord2 9456 |
Copyright terms: Public domain | W3C validator |