ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5sseq GIF version

Theorem syl5sseq 3047
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
syl5sseq.1 𝐵𝐴
syl5sseq.2 (𝜑𝐴 = 𝐶)
Assertion
Ref Expression
syl5sseq (𝜑𝐵𝐶)

Proof of Theorem syl5sseq
StepHypRef Expression
1 syl5sseq.2 . 2 (𝜑𝐴 = 𝐶)
2 syl5sseq.1 . 2 𝐵𝐴
3 sseq2 3021 . . 3 (𝐴 = 𝐶 → (𝐵𝐴𝐵𝐶))
43biimpa 290 . 2 ((𝐴 = 𝐶𝐵𝐴) → 𝐵𝐶)
51, 2, 4sylancl 404 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986
This theorem is referenced by:  fndmdif  5293  fneqeql2  5297  fconst4m  5402  f1opw2  5726  ecss  6170  fopwdom  6333  phplem2  6339  nn0supp  8340  monoord2  9456
  Copyright terms: Public domain W3C validator