ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqelr GIF version

Theorem syl6eqelr 2170
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqelr.1 (𝜑𝐵 = 𝐴)
syl6eqelr.2 𝐵𝐶
Assertion
Ref Expression
syl6eqelr (𝜑𝐴𝐶)

Proof of Theorem syl6eqelr
StepHypRef Expression
1 syl6eqelr.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2086 . 2 (𝜑𝐴 = 𝐵)
3 syl6eqelr.2 . 2 𝐵𝐶
42, 3syl6eqel 2169 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077
This theorem is referenced by:  eusvnfb  4204  releldm2  5831  bren  6251  brdomg  6252  ioof  8994
  Copyright terms: Public domain W3C validator