![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ioof | GIF version |
Description: The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
Ref | Expression |
---|---|
ioof | ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval 8931 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥(,)𝑦) = {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ioossre 8958 | . . . . 5 ⊢ (𝑥(,)𝑦) ⊆ ℝ | |
3 | df-ov 5535 | . . . . . . 7 ⊢ (𝑥(,)𝑦) = ((,)‘〈𝑥, 𝑦〉) | |
4 | iooex 8930 | . . . . . . . 8 ⊢ (,) ∈ V | |
5 | vex 2604 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
6 | vex 2604 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
7 | 5, 6 | opex 3984 | . . . . . . . 8 ⊢ 〈𝑥, 𝑦〉 ∈ V |
8 | 4, 7 | fvex 5215 | . . . . . . 7 ⊢ ((,)‘〈𝑥, 𝑦〉) ∈ V |
9 | 3, 8 | eqeltri 2151 | . . . . . 6 ⊢ (𝑥(,)𝑦) ∈ V |
10 | 9 | elpw 3388 | . . . . 5 ⊢ ((𝑥(,)𝑦) ∈ 𝒫 ℝ ↔ (𝑥(,)𝑦) ⊆ ℝ) |
11 | 2, 10 | mpbir 144 | . . . 4 ⊢ (𝑥(,)𝑦) ∈ 𝒫 ℝ |
12 | 1, 11 | syl6eqelr 2170 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ) |
13 | 12 | rgen2a 2417 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ |
14 | df-ioo 8915 | . . 3 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
15 | 14 | fmpt2 5847 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ ↔ (,):(ℝ* × ℝ*)⟶𝒫 ℝ) |
16 | 13, 15 | mpbi 143 | 1 ⊢ (,):(ℝ* × ℝ*)⟶𝒫 ℝ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∈ wcel 1433 ∀wral 2348 {crab 2352 Vcvv 2601 ⊆ wss 2973 𝒫 cpw 3382 〈cop 3401 class class class wbr 3785 × cxp 4361 ⟶wf 4918 ‘cfv 4922 (class class class)co 5532 ℝcr 6980 ℝ*cxr 7152 < clt 7153 (,)cioo 8911 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-ioo 8915 |
This theorem is referenced by: unirnioo 8996 dfioo2 8997 ioorebasg 8998 |
Copyright terms: Public domain | W3C validator |