ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniss2 GIF version

Theorem uniss2 3632
Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of [TakeutiZaring] p. 59. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
uniss2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem uniss2
StepHypRef Expression
1 ssuni 3623 . . . . 5 ((𝑥𝑦𝑦𝐵) → 𝑥 𝐵)
21expcom 114 . . . 4 (𝑦𝐵 → (𝑥𝑦𝑥 𝐵))
32rexlimiv 2471 . . 3 (∃𝑦𝐵 𝑥𝑦𝑥 𝐵)
43ralimi 2426 . 2 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 → ∀𝑥𝐴 𝑥 𝐵)
5 unissb 3631 . 2 ( 𝐴 𝐵 ↔ ∀𝑥𝐴 𝑥 𝐵)
64, 5sylibr 132 1 (∀𝑥𝐴𝑦𝐵 𝑥𝑦 𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  wral 2348  wrex 2349  wss 2973   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602
This theorem is referenced by:  unidif  3633
  Copyright terms: Public domain W3C validator