![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssuni | GIF version |
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ssuni | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2142 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐵)) | |
2 | 1 | imbi1d 229 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶))) |
3 | elunii 3606 | . . . . . . 7 ⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐶) → 𝑦 ∈ ∪ 𝐶) | |
4 | 3 | expcom 114 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → (𝑦 ∈ 𝑥 → 𝑦 ∈ ∪ 𝐶)) |
5 | 2, 4 | vtoclga 2664 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ ∪ 𝐶)) |
6 | 5 | imim2d 53 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → ((𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → (𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
7 | 6 | alimdv 1800 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵) → ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶))) |
8 | dfss2 2988 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
9 | dfss2 2988 | . . 3 ⊢ (𝐴 ⊆ ∪ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑦 ∈ ∪ 𝐶)) | |
10 | 7, 8, 9 | 3imtr4g 203 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ 𝐵 → 𝐴 ⊆ ∪ 𝐶)) |
11 | 10 | impcom 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 = wceq 1284 ∈ wcel 1433 ⊆ wss 2973 ∪ cuni 3601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 |
This theorem is referenced by: elssuni 3629 uniss2 3632 ssorduni 4231 |
Copyright terms: Public domain | W3C validator |