ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni GIF version

Theorem ssuni 3623
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)

Proof of Theorem ssuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2142 . . . . . . 7 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
21imbi1d 229 . . . . . 6 (𝑥 = 𝐵 → ((𝑦𝑥𝑦 𝐶) ↔ (𝑦𝐵𝑦 𝐶)))
3 elunii 3606 . . . . . . 7 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
43expcom 114 . . . . . 6 (𝑥𝐶 → (𝑦𝑥𝑦 𝐶))
52, 4vtoclga 2664 . . . . 5 (𝐵𝐶 → (𝑦𝐵𝑦 𝐶))
65imim2d 53 . . . 4 (𝐵𝐶 → ((𝑦𝐴𝑦𝐵) → (𝑦𝐴𝑦 𝐶)))
76alimdv 1800 . . 3 (𝐵𝐶 → (∀𝑦(𝑦𝐴𝑦𝐵) → ∀𝑦(𝑦𝐴𝑦 𝐶)))
8 dfss2 2988 . . 3 (𝐴𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
9 dfss2 2988 . . 3 (𝐴 𝐶 ↔ ∀𝑦(𝑦𝐴𝑦 𝐶))
107, 8, 93imtr4g 203 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 𝐶))
1110impcom 123 1 ((𝐴𝐵𝐵𝐶) → 𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282   = wceq 1284  wcel 1433  wss 2973   cuni 3601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602
This theorem is referenced by:  elssuni  3629  uniss2  3632  ssorduni  4231
  Copyright terms: Public domain W3C validator