ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssd GIF version

Theorem unssd 3148
Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
unssd.1 (𝜑𝐴𝐶)
unssd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
unssd (𝜑 → (𝐴𝐵) ⊆ 𝐶)

Proof of Theorem unssd
StepHypRef Expression
1 unssd.1 . 2 (𝜑𝐴𝐶)
2 unssd.2 . 2 (𝜑𝐵𝐶)
3 unss 3146 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
43biimpi 118 . 2 ((𝐴𝐶𝐵𝐶) → (𝐴𝐵) ⊆ 𝐶)
51, 2, 4syl2anc 403 1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  cun 2971  wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by:  tpssi  3551  un0addcl  8321  un0mulcl  8322  fzosplit  9186  fzouzsplit  9188  bj-omtrans  10751
  Copyright terms: Public domain W3C validator