| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocle | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 9-Sep-1993.) |
| Ref | Expression |
|---|---|
| vtocle.1 | ⊢ 𝐴 ∈ V |
| vtocle.2 | ⊢ (𝑥 = 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| vtocle | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocle.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtocle.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 3 | 2 | vtocleg 2669 | . 2 ⊢ (𝐴 ∈ V → 𝜑) |
| 4 | 1, 3 | ax-mp 7 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1284 ∈ wcel 1433 Vcvv 2601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: repizf2 3936 nn0ind-raph 8464 |
| Copyright terms: Public domain | W3C validator |