ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpun GIF version

Theorem xpun 4419
Description: The cross product of two unions. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
xpun ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))

Proof of Theorem xpun
StepHypRef Expression
1 xpundi 4414 . 2 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷))
2 xpundir 4415 . . 3 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶))
3 xpundir 4415 . . 3 ((𝐴𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))
42, 3uneq12i 3124 . 2 (((𝐴𝐵) × 𝐶) ∪ ((𝐴𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)))
5 un4 3132 . 2 (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
61, 4, 53eqtri 2105 1 ((𝐴𝐵) × (𝐶𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷)))
Colors of variables: wff set class
Syntax hints:   = wceq 1284  cun 2971   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-opab 3840  df-xp 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator