![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xpun | GIF version |
Description: The cross product of two unions. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
xpun | ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpundi 4414 | . 2 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) | |
2 | xpundir 4415 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐶) = ((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) | |
3 | xpundir 4415 | . . 3 ⊢ ((𝐴 ∪ 𝐵) × 𝐷) = ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷)) | |
4 | 2, 3 | uneq12i 3124 | . 2 ⊢ (((𝐴 ∪ 𝐵) × 𝐶) ∪ ((𝐴 ∪ 𝐵) × 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) |
5 | un4 3132 | . 2 ⊢ (((𝐴 × 𝐶) ∪ (𝐵 × 𝐶)) ∪ ((𝐴 × 𝐷) ∪ (𝐵 × 𝐷))) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) | |
6 | 1, 4, 5 | 3eqtri 2105 | 1 ⊢ ((𝐴 ∪ 𝐵) × (𝐶 ∪ 𝐷)) = (((𝐴 × 𝐶) ∪ (𝐴 × 𝐷)) ∪ ((𝐵 × 𝐶) ∪ (𝐵 × 𝐷))) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∪ cun 2971 × cxp 4361 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-opab 3840 df-xp 4369 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |