![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-xp | GIF version |
Description: Define the cross product of two classes. Definition 9.11 of [Quine] p. 64. For example, ( { 1 , 5 } × { 2 , 7 } ) = ( { 〈 1 , 2 〉, 〈 1 , 7 〉 } ∪ { 〈 5 , 2 〉, 〈 5 , 7 〉 } ) . Another example is that the set of rational numbers are defined in using the cross-product ( Z × N ) ; the left- and right-hand sides of the cross-product represent the top (integer) and bottom (natural) numbers of a fraction. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-xp | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cxp 4361 | . 2 class (𝐴 × 𝐵) |
4 | vx | . . . . . 6 setvar 𝑥 | |
5 | 4 | cv 1283 | . . . . 5 class 𝑥 |
6 | 5, 1 | wcel 1433 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | vy | . . . . . 6 setvar 𝑦 | |
8 | 7 | cv 1283 | . . . . 5 class 𝑦 |
9 | 8, 2 | wcel 1433 | . . . 4 wff 𝑦 ∈ 𝐵 |
10 | 6, 9 | wa 102 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
11 | 10, 4, 7 | copab 3838 | . 2 class {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
12 | 3, 11 | wceq 1284 | 1 wff (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
Colors of variables: wff set class |
This definition is referenced by: xpeq1 4377 xpeq2 4378 elxpi 4379 elxp 4380 nfxp 4389 fconstmpt 4405 brab2a 4411 xpundi 4414 xpundir 4415 opabssxp 4432 csbxpg 4439 xpss12 4463 inxp 4488 dmxpm 4573 resopab 4672 cnvxp 4762 xpcom 4884 dfxp3 5840 dmaddpq 6569 dmmulpq 6570 enq0enq 6621 npsspw 6661 shftfvalg 9706 shftfval 9709 |
Copyright terms: Public domain | W3C validator |