| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.33b | Structured version Visualization version Unicode version | ||
| Description: The antecedent provides a condition implying the converse of 19.33 1812. (Contributed by NM, 27-Mar-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 5-Jul-2014.) |
| Ref | Expression |
|---|---|
| 19.33b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 509 |
. . 3
| |
| 2 | alnex 1706 |
. . . . . 6
| |
| 3 | pm2.53 388 |
. . . . . . 7
| |
| 4 | 3 | al2imi 1743 |
. . . . . 6
|
| 5 | 2, 4 | syl5bir 233 |
. . . . 5
|
| 6 | olc 399 |
. . . . 5
| |
| 7 | 5, 6 | syl6com 37 |
. . . 4
|
| 8 | 19.30 1809 |
. . . . . . 7
| |
| 9 | 8 | orcomd 403 |
. . . . . 6
|
| 10 | 9 | ord 392 |
. . . . 5
|
| 11 | orc 400 |
. . . . 5
| |
| 12 | 10, 11 | syl6com 37 |
. . . 4
|
| 13 | 7, 12 | jaoi 394 |
. . 3
|
| 14 | 1, 13 | sylbi 207 |
. 2
|
| 15 | 19.33 1812 |
. 2
| |
| 16 | 14, 15 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 |
| This theorem is referenced by: kmlem16 8987 |
| Copyright terms: Public domain | W3C validator |