| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem16 | Structured version Visualization version Unicode version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| Ref | Expression |
|---|---|
| kmlem14.1 |
|
| kmlem14.2 |
|
| kmlem14.3 |
|
| Ref | Expression |
|---|---|
| kmlem16 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem14.1 |
. . . 4
| |
| 2 | kmlem14.2 |
. . . 4
| |
| 3 | kmlem14.3 |
. . . 4
| |
| 4 | 1, 2, 3 | kmlem14 8985 |
. . 3
|
| 5 | 1, 2, 3 | kmlem15 8986 |
. . . 4
|
| 6 | 5 | exbii 1774 |
. . 3
|
| 7 | 4, 6 | orbi12i 543 |
. 2
|
| 8 | 19.43 1810 |
. 2
| |
| 9 | pm3.24 926 |
. . . . . 6
| |
| 10 | simpl 473 |
. . . . . . . . 9
| |
| 11 | 10 | sps 2055 |
. . . . . . . 8
|
| 12 | 11 | exlimivv 1860 |
. . . . . . 7
|
| 13 | simpl 473 |
. . . . . . . . 9
| |
| 14 | 13 | sps 2055 |
. . . . . . . 8
|
| 15 | 14 | exlimivv 1860 |
. . . . . . 7
|
| 16 | 12, 15 | anim12i 590 |
. . . . . 6
|
| 17 | 9, 16 | mto 188 |
. . . . 5
|
| 18 | 19.33b 1813 |
. . . . 5
| |
| 19 | 17, 18 | ax-mp 5 |
. . . 4
|
| 20 | 10 | exlimiv 1858 |
. . . . . . . . . 10
|
| 21 | 13 | exlimiv 1858 |
. . . . . . . . . 10
|
| 22 | 20, 21 | anim12i 590 |
. . . . . . . . 9
|
| 23 | 9, 22 | mto 188 |
. . . . . . . 8
|
| 24 | 19.33b 1813 |
. . . . . . . 8
| |
| 25 | 23, 24 | ax-mp 5 |
. . . . . . 7
|
| 26 | 25 | exbii 1774 |
. . . . . 6
|
| 27 | 19.43 1810 |
. . . . . 6
| |
| 28 | 26, 27 | bitr2i 265 |
. . . . 5
|
| 29 | 28 | albii 1747 |
. . . 4
|
| 30 | 19, 29 | bitr3i 266 |
. . 3
|
| 31 | 30 | exbii 1774 |
. 2
|
| 32 | 7, 8, 31 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 |
| This theorem is referenced by: dfackm 8988 |
| Copyright terms: Public domain | W3C validator |