MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.45 Structured version   Visualization version   Unicode version

Theorem 19.45 2107
Description: Theorem 19.45 of [Margaris] p. 90. See 19.45v 1913 for a version requiring fewer axioms. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.45.1  |-  F/ x ph
Assertion
Ref Expression
19.45  |-  ( E. x ( ph  \/  ps )  <->  ( ph  \/  E. x ps ) )

Proof of Theorem 19.45
StepHypRef Expression
1 19.43 1810 . 2  |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  E. x ps ) )
2 19.45.1 . . . 4  |-  F/ x ph
3219.9 2072 . . 3  |-  ( E. x ph  <->  ph )
43orbi1i 542 . 2  |-  ( ( E. x ph  \/  E. x ps )  <->  ( ph  \/  E. x ps )
)
51, 4bitri 264 1  |-  ( E. x ( ph  \/  ps )  <->  ( ph  \/  E. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by:  eeor  2171
  Copyright terms: Public domain W3C validator