| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2a1dd | Structured version Visualization version Unicode version | ||
| Description: Double deduction introducing two antecedents. Two applications of 2a1dd 51. Deduction associated with 2a1d 26. Double deduction associated with 2a1 28 and 2a1i 12. (Contributed by Jeff Hankins, 5-Aug-2009.) |
| Ref | Expression |
|---|---|
| 2a1dd.1 |
|
| Ref | Expression |
|---|---|
| 2a1dd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2a1dd.1 |
. . 3
| |
| 2 | 1 | a1dd 50 |
. 2
|
| 3 | 2 | a1dd 50 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: ad5ant13 1301 ad5ant14 1302 ad5ant15 1303 ad5ant23 1304 ad5ant24 1305 ad5ant25 1306 ad5ant125 1312 |
| Copyright terms: Public domain | W3C validator |