| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ad5ant14 | Structured version Visualization version Unicode version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| ad5ant14.1 |
|
| Ref | Expression |
|---|---|
| ad5ant14 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad5ant14.1 |
. . . . . . . . 9
| |
| 2 | 1 | ex 450 |
. . . . . . . 8
|
| 3 | 2 | 2a1dd 51 |
. . . . . . 7
|
| 4 | 3 | a1ddd 80 |
. . . . . 6
|
| 5 | 4 | com45 97 |
. . . . 5
|
| 6 | 5 | com23 86 |
. . . 4
|
| 7 | 6 | com34 91 |
. . 3
|
| 8 | 7 | imp 445 |
. 2
|
| 9 | 8 | imp41 619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: legval 25479 lindsenlbs 33404 matunitlindflem1 33405 xrralrecnnle 39602 pimdecfgtioo 40927 pimincfltioo 40928 |
| Copyright terms: Public domain | W3C validator |