| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2euex | Structured version Visualization version Unicode version | ||
| Description: Double quantification with existential uniqueness. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| 2euex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2496 |
. 2
| |
| 2 | excom 2042 |
. . . 4
| |
| 3 | nfe1 2027 |
. . . . . 6
| |
| 4 | 3 | nfmo 2487 |
. . . . 5
|
| 5 | 19.8a 2052 |
. . . . . . 7
| |
| 6 | 5 | moimi 2520 |
. . . . . 6
|
| 7 | df-mo 2475 |
. . . . . 6
| |
| 8 | 6, 7 | sylib 208 |
. . . . 5
|
| 9 | 4, 8 | eximd 2085 |
. . . 4
|
| 10 | 2, 9 | syl5bi 232 |
. . 3
|
| 11 | 10 | impcom 446 |
. 2
|
| 12 | 1, 11 | sylbi 207 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: 2exeu 2549 |
| Copyright terms: Public domain | W3C validator |