![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-eu | Structured version Visualization version Unicode version |
Description: Define existential
uniqueness, i.e. "there exists exactly one ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-eu |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph |
. . 3
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | 1, 2 | weu 2470 |
. 2
![]() ![]() ![]() ![]() |
4 | vy |
. . . . . 6
![]() ![]() | |
5 | 2, 4 | weq 1874 |
. . . . 5
![]() ![]() ![]() ![]() |
6 | 1, 5 | wb 196 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6, 2 | wal 1481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7, 4 | wex 1704 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 8 | wb 196 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: euequ1 2476 mo2v 2477 euf 2478 nfeu1 2480 nfeud2 2482 eubid 2488 euex 2494 sb8eu 2503 exists1 2561 reu6 3395 euabsn2 4260 euotd 4975 iotauni 5863 iota1 5865 iotanul 5866 iotaex 5868 iota4 5869 fv3 6206 eufnfv 6491 seqomlem2 7546 aceq1 8940 dfac5 8951 bnj89 30787 wl-eudf 33354 wl-euequ1f 33356 wl-sb8eut 33359 iotain 38618 iotaexeu 38619 iotasbc 38620 iotavalsb 38634 sbiota1 38635 |
Copyright terms: Public domain | W3C validator |