| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ralbiim | Structured version Visualization version Unicode version | ||
| Description: Split a biconditional and distribute 2 quantifiers, analogous to 2albiim 1817 and ralbiim 3069. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| 2ralbiim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiim 3069 |
. . 3
| |
| 2 | 1 | ralbii 2980 |
. 2
|
| 3 | r19.26 3064 |
. 2
| |
| 4 | 2, 3 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ral 2917 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |