| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2ralunsn | Structured version Visualization version Unicode version | ||
| Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
| Ref | Expression |
|---|---|
| 2ralunsn.1 |
|
| 2ralunsn.2 |
|
| 2ralunsn.3 |
|
| Ref | Expression |
|---|---|
| 2ralunsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ralunsn.2 |
. . . 4
| |
| 2 | 1 | ralunsn 4422 |
. . 3
|
| 3 | 2 | ralbidv 2986 |
. 2
|
| 4 | 2ralunsn.1 |
. . . . . 6
| |
| 5 | 4 | ralbidv 2986 |
. . . . 5
|
| 6 | 2ralunsn.3 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 747 |
. . . 4
|
| 8 | 7 | ralunsn 4422 |
. . 3
|
| 9 | r19.26 3064 |
. . . 4
| |
| 10 | 9 | anbi1i 731 |
. . 3
|
| 11 | 8, 10 | syl6bb 276 |
. 2
|
| 12 | 3, 11 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |