| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-un | Structured version Visualization version Unicode version | ||
| Description: Define the union of two
classes. Definition 5.6 of [TakeutiZaring]
p. 16. For example, |
| Ref | Expression |
|---|---|
| df-un |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | 1, 2 | cun 3572 |
. 2
|
| 4 | vx |
. . . . . 6
| |
| 5 | 4 | cv 1482 |
. . . . 5
|
| 6 | 5, 1 | wcel 1990 |
. . . 4
|
| 7 | 5, 2 | wcel 1990 |
. . . 4
|
| 8 | 6, 7 | wo 383 |
. . 3
|
| 9 | 8, 4 | cab 2608 |
. 2
|
| 10 | 3, 9 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: elun 3753 nfun 3769 unipr 4449 iinuni 4609 fvclss 6500 bnj98 30937 |
| Copyright terms: Public domain | W3C validator |