| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2sbc6g | Structured version Visualization version Unicode version | ||
| Description: Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 2sbc6g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq2 2633 |
. . . . . . 7
| |
| 2 | 1 | anbi2d 740 |
. . . . . 6
|
| 3 | 2 | imbi1d 331 |
. . . . 5
|
| 4 | 3 | 2albidv 1851 |
. . . 4
|
| 5 | dfsbcq 3437 |
. . . . 5
| |
| 6 | 5 | sbcbidv 3490 |
. . . 4
|
| 7 | 4, 6 | bibi12d 335 |
. . 3
|
| 8 | eqeq2 2633 |
. . . . . . 7
| |
| 9 | 8 | anbi1d 741 |
. . . . . 6
|
| 10 | 9 | imbi1d 331 |
. . . . 5
|
| 11 | 10 | 2albidv 1851 |
. . . 4
|
| 12 | dfsbcq 3437 |
. . . 4
| |
| 13 | 11, 12 | bibi12d 335 |
. . 3
|
| 14 | vex 3203 |
. . . . 5
| |
| 15 | 14 | sbc6 3462 |
. . . 4
|
| 16 | 19.21v 1868 |
. . . . . 6
| |
| 17 | impexp 462 |
. . . . . . 7
| |
| 18 | 17 | albii 1747 |
. . . . . 6
|
| 19 | vex 3203 |
. . . . . . . 8
| |
| 20 | 19 | sbc6 3462 |
. . . . . . 7
|
| 21 | 20 | imbi2i 326 |
. . . . . 6
|
| 22 | 16, 18, 21 | 3bitr4ri 293 |
. . . . 5
|
| 23 | 22 | albii 1747 |
. . . 4
|
| 24 | 15, 23 | bitr2i 265 |
. . 3
|
| 25 | 7, 13, 24 | vtocl2g 3270 |
. 2
|
| 26 | 25 | ancoms 469 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: pm14.123a 38626 |
| Copyright terms: Public domain | W3C validator |