Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2sbc5g Structured version   Visualization version   Unicode version

Theorem 2sbc5g 38617
Description: Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
2sbc5g  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. z E. w ( ( z  =  A  /\  w  =  B )  /\  ph ) 
<-> 
[. A  /  z ]. [. B  /  w ]. ph ) )
Distinct variable groups:    z, w, A    w, B, z
Allowed substitution hints:    ph( z, w)    C( z, w)    D( z, w)

Proof of Theorem 2sbc5g
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2633 . . . . . . 7  |-  ( y  =  B  ->  (
w  =  y  <->  w  =  B ) )
21anbi2d 740 . . . . . 6  |-  ( y  =  B  ->  (
( z  =  x  /\  w  =  y )  <->  ( z  =  x  /\  w  =  B ) ) )
32anbi1d 741 . . . . 5  |-  ( y  =  B  ->  (
( ( z  =  x  /\  w  =  y )  /\  ph ) 
<->  ( ( z  =  x  /\  w  =  B )  /\  ph ) ) )
432exbidv 1852 . . . 4  |-  ( y  =  B  ->  ( E. z E. w ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  E. z E. w ( ( z  =  x  /\  w  =  B )  /\  ph )
) )
5 dfsbcq 3437 . . . . 5  |-  ( y  =  B  ->  ( [. y  /  w ]. ph  <->  [. B  /  w ]. ph ) )
65sbcbidv 3490 . . . 4  |-  ( y  =  B  ->  ( [. x  /  z ]. [. y  /  w ]. ph  <->  [. x  /  z ]. [. B  /  w ]. ph ) )
74, 6bibi12d 335 . . 3  |-  ( y  =  B  ->  (
( E. z E. w ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  [. x  /  z ]. [. y  /  w ]. ph )  <->  ( E. z E. w ( ( z  =  x  /\  w  =  B )  /\  ph )  <->  [. x  / 
z ]. [. B  /  w ]. ph ) ) )
8 eqeq2 2633 . . . . . . 7  |-  ( x  =  A  ->  (
z  =  x  <->  z  =  A ) )
98anbi1d 741 . . . . . 6  |-  ( x  =  A  ->  (
( z  =  x  /\  w  =  B )  <->  ( z  =  A  /\  w  =  B ) ) )
109anbi1d 741 . . . . 5  |-  ( x  =  A  ->  (
( ( z  =  x  /\  w  =  B )  /\  ph ) 
<->  ( ( z  =  A  /\  w  =  B )  /\  ph ) ) )
11102exbidv 1852 . . . 4  |-  ( x  =  A  ->  ( E. z E. w ( ( z  =  x  /\  w  =  B )  /\  ph )  <->  E. z E. w ( ( z  =  A  /\  w  =  B )  /\  ph )
) )
12 dfsbcq 3437 . . . 4  |-  ( x  =  A  ->  ( [. x  /  z ]. [. B  /  w ]. ph  <->  [. A  /  z ]. [. B  /  w ]. ph ) )
1311, 12bibi12d 335 . . 3  |-  ( x  =  A  ->  (
( E. z E. w ( ( z  =  x  /\  w  =  B )  /\  ph ) 
<-> 
[. x  /  z ]. [. B  /  w ]. ph )  <->  ( E. z E. w ( ( z  =  A  /\  w  =  B )  /\  ph )  <->  [. A  / 
z ]. [. B  /  w ]. ph ) ) )
14 sbc5 3460 . . . 4  |-  ( [. x  /  z ]. [. y  /  w ]. ph  <->  E. z
( z  =  x  /\  [. y  /  w ]. ph ) )
15 19.42v 1918 . . . . . 6  |-  ( E. w ( z  =  x  /\  ( w  =  y  /\  ph ) )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  ph ) ) )
16 anass 681 . . . . . . 7  |-  ( ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  ( z  =  x  /\  ( w  =  y  /\  ph ) ) )
1716exbii 1774 . . . . . 6  |-  ( E. w ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  E. w ( z  =  x  /\  (
w  =  y  /\  ph ) ) )
18 sbc5 3460 . . . . . . 7  |-  ( [. y  /  w ]. ph  <->  E. w
( w  =  y  /\  ph ) )
1918anbi2i 730 . . . . . 6  |-  ( ( z  =  x  /\  [. y  /  w ]. ph )  <->  ( z  =  x  /\  E. w
( w  =  y  /\  ph ) ) )
2015, 17, 193bitr4ri 293 . . . . 5  |-  ( ( z  =  x  /\  [. y  /  w ]. ph )  <->  E. w ( ( z  =  x  /\  w  =  y )  /\  ph ) )
2120exbii 1774 . . . 4  |-  ( E. z ( z  =  x  /\  [. y  /  w ]. ph )  <->  E. z E. w ( ( z  =  x  /\  w  =  y )  /\  ph )
)
2214, 21bitr2i 265 . . 3  |-  ( E. z E. w ( ( z  =  x  /\  w  =  y )  /\  ph )  <->  [. x  /  z ]. [. y  /  w ]. ph )
237, 13, 22vtocl2g 3270 . 2  |-  ( ( B  e.  D  /\  A  e.  C )  ->  ( E. z E. w ( ( z  =  A  /\  w  =  B )  /\  ph ) 
<-> 
[. A  /  z ]. [. B  /  w ]. ph ) )
2423ancoms 469 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( E. z E. w ( ( z  =  A  /\  w  =  B )  /\  ph ) 
<-> 
[. A  /  z ]. [. B  /  w ]. ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436
This theorem is referenced by:  pm14.123b  38627
  Copyright terms: Public domain W3C validator