MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an4anass Structured version   Visualization version   Unicode version

Theorem 3an4anass 1291
Description: Associative law for four conjunctions with a triple conjunction. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
Assertion
Ref Expression
3an4anass  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th ) 
<->  ( ( ph  /\  ps )  /\  ( ch  /\  th ) ) )

Proof of Theorem 3an4anass
StepHypRef Expression
1 df-3an 1039 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21anbi1i 731 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th ) 
<->  ( ( ( ph  /\ 
ps )  /\  ch )  /\  th ) )
3 anass 681 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  <->  ( ( ph  /\  ps )  /\  ( ch  /\  th )
) )
42, 3bitri 264 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th ) 
<->  ( ( ph  /\  ps )  /\  ( ch  /\  th ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  oeeui  7682  isclwlkupgr  26674  clwlkclwwlk  26903  bnj557  30971
  Copyright terms: Public domain W3C validator