MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anassrs Structured version   Visualization version   Unicode version

Theorem 3anassrs 1290
Description: Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypothesis
Ref Expression
3anassrs.1  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
Assertion
Ref Expression
3anassrs  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )

Proof of Theorem 3anassrs
StepHypRef Expression
1 3anassrs.1 . . 3  |-  ( (
ph  /\  ( ps  /\ 
ch  /\  th )
)  ->  ta )
213exp2 1285 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
32imp41 619 1  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  ralrimivvva  2972  euotd  4975  dfgrp3e  17515  kerf1hrm  18743  psgndif  19948  neiptopnei  20936  neitr  20984  neitx  21410  cnextcn  21871  utoptop  22038  ustuqtoplem  22043  ustuqtop1  22045  utopsnneiplem  22051  utop3cls  22055  trcfilu  22098  neipcfilu  22100  xmetpsmet  22153  metustsym  22360  grporcan  27372  disjdsct  29480  xrofsup  29533  omndmul2  29712  archirngz  29743  archiabllem1  29747  archiabllem2c  29749  reofld  29840  pstmfval  29939  tpr2rico  29958  esumpcvgval  30140  esumcvg  30148  esum2d  30155  voliune  30292  signsply0  30628  signstfvneq0  30649
  Copyright terms: Public domain W3C validator