| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2and | Structured version Visualization version Unicode version | ||
| Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019.) (Proof shortened by Wolf Lammen, 19-Jan-2020.) |
| Ref | Expression |
|---|---|
| a2and.1 |
|
| a2and.2 |
|
| Ref | Expression |
|---|---|
| a2and |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2and.2 |
. . . . . . 7
| |
| 2 | 1 | expd 452 |
. . . . . 6
|
| 3 | 2 | imdistand 728 |
. . . . 5
|
| 4 | 3 | imp 445 |
. . . 4
|
| 5 | a2and.1 |
. . . . 5
| |
| 6 | 5 | imp 445 |
. . . 4
|
| 7 | 4, 6 | embantd 59 |
. . 3
|
| 8 | 7 | ex 450 |
. 2
|
| 9 | 8 | com23 86 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: telgsumfzs 18386 |
| Copyright terms: Public domain | W3C validator |