| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imdistand | Structured version Visualization version Unicode version | ||
| Description: Distribution of implication with conjunction (deduction rule). (Contributed by NM, 27-Aug-2004.) |
| Ref | Expression |
|---|---|
| imdistand.1 |
|
| Ref | Expression |
|---|---|
| imdistand |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistand.1 |
. 2
| |
| 2 | imdistan 725 |
. 2
| |
| 3 | 1, 2 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: imdistanda 729 a2and 853 predpo 5698 unblem1 8212 cfub 9071 lbzbi 11776 poimirlem32 33441 ispridl2 33837 ispridlc 33869 lnr2i 37686 rfovcnvf1od 38298 |
| Copyright terms: Public domain | W3C validator |