| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aecom-o | Structured version Visualization version Unicode version | ||
| Description: Commutation law for
identical variable specifiers. The antecedent and
consequent are true when |
| Ref | Expression |
|---|---|
| aecom-o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-c11 34172 |
. . 3
| |
| 2 | 1 | pm2.43i 52 |
. 2
|
| 3 | equcomi1 34185 |
. . 3
| |
| 4 | 3 | alimi 1739 |
. 2
|
| 5 | 2, 4 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c10 34171 ax-c11 34172 ax-c9 34175 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: aecoms-o 34187 naecoms-o 34212 aev-o 34216 ax12indalem 34230 |
| Copyright terms: Public domain | W3C validator |