| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax12indalem | Structured version Visualization version Unicode version | ||
| Description: Lemma for ax12inda2 34232 and ax12inda 34233. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax12indalem.1 |
|
| Ref | Expression |
|---|---|
| ax12indalem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1 6 |
. . . . . . . . 9
| |
| 2 | 1 | axc4i-o 34183 |
. . . . . . . 8
|
| 3 | 2 | a1i 11 |
. . . . . . 7
|
| 4 | biidd 252 |
. . . . . . . 8
| |
| 5 | 4 | dral1-o 34189 |
. . . . . . 7
|
| 6 | 5 | imbi2d 330 |
. . . . . . . 8
|
| 7 | 6 | dral2-o 34215 |
. . . . . . 7
|
| 8 | 3, 5, 7 | 3imtr4d 283 |
. . . . . 6
|
| 9 | 8 | aecoms-o 34187 |
. . . . 5
|
| 10 | 9 | a1d 25 |
. . . 4
|
| 11 | 10 | a1d 25 |
. . 3
|
| 12 | 11 | adantr 481 |
. 2
|
| 13 | simplr 792 |
. . . . 5
| |
| 14 | aecom-o 34186 |
. . . . . . . . 9
| |
| 15 | 14 | con3i 150 |
. . . . . . . 8
|
| 16 | aecom-o 34186 |
. . . . . . . . 9
| |
| 17 | 16 | con3i 150 |
. . . . . . . 8
|
| 18 | axc9 2302 |
. . . . . . . . 9
| |
| 19 | 18 | imp 445 |
. . . . . . . 8
|
| 20 | 15, 17, 19 | syl2an 494 |
. . . . . . 7
|
| 21 | 20 | imp 445 |
. . . . . 6
|
| 22 | 21 | adantlr 751 |
. . . . 5
|
| 23 | hbnae-o 34213 |
. . . . . . 7
| |
| 24 | hba1-o 34182 |
. . . . . . 7
| |
| 25 | 23, 24 | hban 2128 |
. . . . . 6
|
| 26 | ax-c5 34168 |
. . . . . . 7
| |
| 27 | ax12indalem.1 |
. . . . . . . 8
| |
| 28 | 27 | imp 445 |
. . . . . . 7
|
| 29 | 26, 28 | sylan2 491 |
. . . . . 6
|
| 30 | 25, 29 | alimdh 1745 |
. . . . 5
|
| 31 | 13, 22, 30 | syl2anc 693 |
. . . 4
|
| 32 | ax-11 2034 |
. . . . . 6
| |
| 33 | hbnae-o 34213 |
. . . . . . . 8
| |
| 34 | hbnae-o 34213 |
. . . . . . . 8
| |
| 35 | 33, 34 | hban 2128 |
. . . . . . 7
|
| 36 | hbnae-o 34213 |
. . . . . . . . . 10
| |
| 37 | hbnae-o 34213 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | hban 2128 |
. . . . . . . . 9
|
| 39 | 38, 20 | nf5dh 2026 |
. . . . . . . 8
|
| 40 | 19.21t 2073 |
. . . . . . . 8
| |
| 41 | 39, 40 | syl 17 |
. . . . . . 7
|
| 42 | 35, 41 | albidh 1793 |
. . . . . 6
|
| 43 | 32, 42 | syl5ib 234 |
. . . . 5
|
| 44 | 43 | ad2antrr 762 |
. . . 4
|
| 45 | 31, 44 | syld 47 |
. . 3
|
| 46 | 45 | exp31 630 |
. 2
|
| 47 | 12, 46 | pm2.61ian 831 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c10 34171 ax-c11 34172 ax-c9 34175 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: ax12inda2 34232 |
| Copyright terms: Public domain | W3C validator |