MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aevOLD Structured version   Visualization version   Unicode version

Theorem aevOLD 2162
Description: Obsolete proof of aev 1983 as of 19-Mar-2021. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 2246, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
aevOLD  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Distinct variable group:    x, y

Proof of Theorem aevOLD
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 aevlem 1981 . . 3  |-  ( A. x  x  =  y  ->  A. u  u  =  w )
2 ax6ev 1890 . . . 4  |-  E. u  u  =  v
3 ax7 1943 . . . . 5  |-  ( u  =  w  ->  (
u  =  v  ->  w  =  v )
)
43aleximi 1759 . . . 4  |-  ( A. u  u  =  w  ->  ( E. u  u  =  v  ->  E. u  w  =  v )
)
52, 4mpi 20 . . 3  |-  ( A. u  u  =  w  ->  E. u  w  =  v )
6 ax5e 1841 . . 3  |-  ( E. u  w  =  v  ->  w  =  v )
71, 5, 63syl 18 . 2  |-  ( A. x  x  =  y  ->  w  =  v )
8 axc16g 2134 . 2  |-  ( A. x  x  =  y  ->  ( w  =  v  ->  A. z  w  =  v ) )
97, 8mpd 15 1  |-  ( A. x  x  =  y  ->  A. z  w  =  v )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator