![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax7 | Structured version Visualization version Unicode version |
Description: Proof of ax-7 1935
from ax7v1 1937 and ax7v2 1938, proving sufficiency of the
conjunction of the latter two weakened versions of ax7v 1936,
which is
itself a weakened version of ax-7 1935.
Note that the weakened version of ax-7 1935
obtained by adding a dv
condition on |
Ref | Expression |
---|---|
ax7 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax7v2 1938 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ax7v2 1938 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ax7v1 1937 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | imp 445 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | a1i 11 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 2, 5 | syl2and 500 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | expd 452 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | ax6evr 1942 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | exlimiiv 1859 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
This theorem is referenced by: equcomi 1944 equtr 1948 equequ1 1952 equvinv 1959 cbvaev 1979 aeveq 1982 aevOLD 2162 aevALTOLD 2321 axc16i 2322 equvel 2347 axext3 2604 dtru 4857 axextnd 9413 bj-dtru 32797 bj-mo3OLD 32832 wl-aetr 33317 wl-exeq 33321 wl-aleq 33322 wl-nfeqfb 33323 equcomi1 34185 hbequid 34194 equidqe 34207 aev-o 34216 ax6e2eq 38773 ax6e2eqVD 39143 |
Copyright terms: Public domain | W3C validator |