MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aevlemALTOLD Structured version   Visualization version   Unicode version

Theorem aevlemALTOLD 2320
Description: Older alternate version of aevlem 1981. Obsolete as of 30-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
aevlemALTOLD  |-  ( A. z  z  =  w  ->  A. y  y  =  x )
Distinct variable group:    z, w

Proof of Theorem aevlemALTOLD
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cbvaev 1979 . 2  |-  ( A. z  z  =  w  ->  A. v  v  =  w )
2 axc11nlemALT 2306 . 2  |-  ( A. v  v  =  w  ->  A. z  z  =  v )
3 cbvaev 1979 . 2  |-  ( A. z  z  =  v  ->  A. x  x  =  v )
4 axc11nlemALT 2306 . 2  |-  ( A. x  x  =  v  ->  A. y  y  =  x )
51, 2, 3, 44syl 19 1  |-  ( A. z  z  =  w  ->  A. y  y  =  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator