HomeHome Metamath Proof Explorer
Theorem List (p. 24 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 2301-2400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfeqf 2301 A variable is effectively not free in an equality if it is not either of the involved variables.  F/ version of ax-c9 34175. (Contributed by Mario Carneiro, 6-Oct-2016.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 6-Sep-2018.)
 |-  ( ( -.  A. z  z  =  x  /\  -.  A. z  z  =  y )  ->  F/ z  x  =  y )
 
Theoremaxc9 2302 Derive set.mm's original ax-c9 34175 from the shorter ax-13 2246. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.)
 |-  ( -.  A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  =  y  ->  A. z  x  =  y ) ) )
 
Theoremaxc15 2303 Derivation of set.mm's original ax-c15 34174 from ax-c11n 34173 and the shorter ax-12 2047 that has replaced it.

Theorem ax12 2304 shows the reverse derivation of ax-12 2047 from ax-c15 34174.

Normally, axc15 2303 should be used rather than ax-c15 34174, except by theorems specifically studying the latter's properties. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)

 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
Theoremax12 2304 Rederivation of axiom ax-12 2047 from ax12v 2048 (used only via sp 2053) , axc11r 2187, and axc15 2303 (on top of Tarski's FOL). (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.)
 |-  ( x  =  y 
 ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremax13ALT 2305 Alternate proof of ax13 2249 from FOL, sp 2053, and axc9 2302. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
 )
 
Theoremaxc11nlemALT 2306* Alternate version of axc11nlemOLD2 1988 used in an older proof. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  w  ->  A. y  y  =  x )
 
Theoremaxc11n 2307 Derive set.mm's original ax-c11n 34173 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when  x and  y are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on  x and  y, then this becomes an instance of aevlem 1981. Use aecom 2311 instead when this does not lengthen the proof. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremaxc11nOLD 2308 Obsolete proof of axc11n 2307 as of 2-Jul-2021. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremaxc11nOLDOLD 2309 Old proof of axc11n 2307. Obsolete as of 29-Mar-2021. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) Adapt to a modification of axc11nlemOLD2 1988. (Revised by Wolf Lammen, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremaxc11nALT 2310 Alternate proof of axc11n 2307 from axc11nlemALT 2306. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremaecom 2311 Commutation law for identical variable specifiers. Both sides of the biconditional are true when  x and  y are substituted with the same variable. (Contributed by NM, 10-May-1993.) Changed to a biconditional. (Revised by BJ, 26-Sep-2019.)
 |-  ( A. x  x  =  y  <->  A. y  y  =  x )
 
Theoremaecoms 2312 A commutation rule for identical variable specifiers. (Contributed by NM, 10-May-1993.)
 |-  ( A. x  x  =  y  ->  ph )   =>    |-  ( A. y  y  =  x  ->  ph )
 
Theoremnaecoms 2313 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
 |-  ( -.  A. x  x  =  y  ->  ph )   =>    |-  ( -.  A. y  y  =  x  ->  ph )
 
Theoremaxc11 2314 Show that ax-c11 34172 can be derived from ax-c11n 34173 in the form of axc11n 2307. Normally, axc11 2314 should be used rather than ax-c11 34172, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
 
Theoremhbae 2315 All variables are effectively bound in an identical variable specifier. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.)
 |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
 
Theoremnfae 2316 All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ z A. x  x  =  y
 
Theoremhbnae 2317 All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 13-May-1993.)
 |-  ( -.  A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
 
Theoremnfnae 2318 All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ z  -.  A. x  x  =  y
 
Theoremhbnaes 2319 Rule that applies hbnae 2317 to antecedent. (Contributed by NM, 15-May-1993.)
 |-  ( A. z  -.  A. x  x  =  y 
 ->  ph )   =>    |-  ( -.  A. x  x  =  y  ->  ph )
 
TheoremaevlemALTOLD 2320* Older alternate version of aevlem 1981. Obsolete as of 30-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. z  z  =  w  ->  A. y  y  =  x )
 
TheoremaevALTOLD 2321* Older alternate proof of aev 1983. Obsolete as of 30-Mar-2021. (Contributed by NM, 8-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  A. z  w  =  v )
 
Theoremaxc16i 2322* Inference with axc16 2135 as its conclusion. (Contributed by NM, 20-May-2008.) (Proof modification is discouraged.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
 
Theoremaxc16nfALT 2323* Alternate proof of axc16nf 2137, shorter but requiring ax-11 2034 and ax-13 2246. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  F/ z ph )
 
Theoremdral2 2324 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2325. (Revised by Wolf Lammen, 4-Mar-2018.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  (
 A. z ph  <->  A. z ps )
 )
 
Theoremdral1 2325 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 6-Sep-2018.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  (
 A. x ph  <->  A. y ps )
 )
 
Theoremdral1ALT 2326 Alternate proof of dral1 2325, shorter but requiring ax-11 2034. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  (
 A. x ph  <->  A. y ps )
 )
 
Theoremdrex1 2327 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( E. x ph  <->  E. y ps )
 )
 
Theoremdrex2 2328 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( E. z ph  <->  E. z ps )
 )
 
Theoremdrnf1 2329 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( F/ x ph  <->  F/ y ps )
 )
 
Theoremdrnf2 2330 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( F/ z ph  <->  F/ z ps )
 )
 
Theoremnfald2 2331 Variation on nfald 2165 which adds the hypothesis that  x and  y are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ( ph  /\ 
 -.  A. x  x  =  y )  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y ps )
 
Theoremnfexd2 2332 Variation on nfexd 2167 which adds the hypothesis that  x and  y are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ( ph  /\ 
 -.  A. x  x  =  y )  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y ps )
 
Theoremexdistrf 2333 Distribution of existential quantifiers, with a bound-variable hypothesis saying that  y is not free in  ph, but  x can be free in  ph (and there is no distinct variable condition on  x and  y). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.)
 |-  ( -.  A. x  x  =  y  ->  F/ y ph )   =>    |-  ( E. x E. y ( ph  /\  ps )  ->  E. x ( ph  /\ 
 E. y ps )
 )
 
Theoremdvelimf 2334 Version of dvelimv 2338 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
 |- 
 F/ x ph   &    |-  F/ z ps   &    |-  ( z  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( -.  A. x  x  =  y  ->  F/ x ps )
 
Theoremdvelimdf 2335 Deduction form of dvelimf 2334. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
 |- 
 F/ x ph   &    |-  F/ z ph   &    |-  ( ph  ->  F/ x ps )   &    |-  ( ph  ->  F/ z ch )   &    |-  ( ph  ->  ( z  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( -.  A. x  x  =  y 
 ->  F/ x ch )
 )
 
Theoremdvelimh 2336 Version of dvelim 2337 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. z ps )   &    |-  (
 z  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theoremdvelim 2337* This theorem can be used to eliminate a distinct variable restriction on  x and  z and replace it with the "distinctor"  -.  A. x x  =  y as an antecedent.  ph normally has  z free and can be read  ph ( z ), and  ps substitutes  y for  z and can be read  ph ( y ). We do not require that 
x and  y be distinct: if they are not, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with  A. x A. z, conjoin them, and apply dvelimdf 2335.

Other variants of this theorem are dvelimh 2336 (with no distinct variable restrictions) and dvelimhw 2173 (that avoids ax-13 2246). (Contributed by NM, 23-Nov-1994.)

 |-  ( ph  ->  A. x ph )   &    |-  ( z  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theoremdvelimv 2338* Similar to dvelim 2337 with first hypothesis replaced by a distinct variable condition. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.)
 |-  ( z  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theoremdvelimnf 2339* Version of dvelim 2337 using "not free" notation. (Contributed by Mario Carneiro, 9-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( z  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( -.  A. x  x  =  y  ->  F/ x ps )
 
Theoremdveeq2ALT 2340* Alternate proof of dveeq2 2298, shorter but requiring ax-11 2034. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y ) )
 
Theoremax12OLD 2341 Obsolete proof of ax12 2304 as of 4-Jul-2021 . Rederivation of axiom ax-12 2047 from ax12v 2048, axc11r 2187, and other axioms. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  y 
 ->  ( A. y ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremax12v2OLD 2342* Obsolete proof of ax12v 2048 as of 24-Mar-2021. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( x  =  z 
 ->  ( ph  ->  A. x ( x  =  z  -> 
 ph ) ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  (
 ph  ->  A. x ( x  =  y  ->  ph )
 ) ) )
 
Theoremax12a2OLD 2343* Obsolete proof of ax12v 2048 as of 24-Mar-2021. (Contributed by NM, 12-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( x  =  z 
 ->  ( A. z ph  ->  A. x ( x  =  z  ->  ph )
 ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
Theoremaxc15OLD 2344 Obsolete proof of axc15 2303 as of 24-Mar-2021. (Contributed by NM, 3-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
Theoremax12b 2345 A bidirectional version of axc15 2303. (Contributed by NM, 30-Jun-2006.)
 |-  ( ( -.  A. x  x  =  y  /\  x  =  y
 )  ->  ( ph  <->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremequvini 2346 A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require  z to be distinct from  x and  y. See equvinv 1959 for a shorter proof requiring fewer axioms when  z is required to be distinct from  x and  y. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 15-Sep-2018.)
 |-  ( x  =  y 
 ->  E. z ( x  =  z  /\  z  =  y ) )
 
Theoremequvel 2347 A variable elimination law for equality with no distinct variable requirements. Compare equvini 2346. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.)
 |-  ( A. z ( z  =  x  <->  z  =  y
 )  ->  x  =  y )
 
Theoremequs5a 2348 A property related to substitution that unlike equs5 2351 does not require a distinctor antecedent. See equs5aALT 2177 for an alternate proof using ax-12 2047 but not ax13 2249. (Contributed by NM, 2-Feb-2007.)
 |-  ( E. x ( x  =  y  /\  A. y ph )  ->  A. x ( x  =  y  ->  ph ) )
 
Theoremequs5e 2349 A property related to substitution that unlike equs5 2351 does not require a distinctor antecedent. See equs5eALT 2178 for an alternate proof using ax-12 2047 but not ax13 2249. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.)
 |-  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  E. y ph ) )
 
Theoremequs45f 2350 Two ways of expressing substitution when  y is not free in  ph. The implication "to the left" is equs4 2290 and does not require the non-freeness hypothesis. Theorem sb56 2150 replaces the non-freeness hypothesis with a dv condition and equs5 2351 replaces it with a distinctor as antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ y ph   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremequs5 2351 Lemma used in proofs of substitution properties. If there is a dv condition on  x ,  y, then sb56 2150 can be used instead; if  y is not free in  ph, then equs45f 2350 can be used. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.)
 |-  ( -.  A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremsb2 2352 One direction of a simplified definition of substitution. The converse requires either a dv condition (sb6 2429) or a non-freeness hypothesis (sb6f 2385). (Contributed by NM, 13-May-1993.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
 
Theoremstdpc4 2353 The specialization axiom of standard predicate calculus. It states that if a statement  ph holds for all  x, then it also holds for the specific case of  y (properly) substituted for  x. Translated to traditional notation, it can be read: " A. x ph ( x )  ->  ph ( y ), provided that  y is free for  x in  ph (
x )." Axiom 4 of [Mendelson] p. 69. See also spsbc 3448 and rspsbc 3518. (Contributed by NM, 14-May-1993.)
 |-  ( A. x ph  ->  [ y  /  x ] ph )
 
Theorem2stdpc4 2354 A double specialization using explicit substitution. This is Theorem PM*11.1 in [WhiteheadRussell] p. 159. See stdpc4 2353 for the analogous single specialization. See 2sp 2056 for another double specialization. (Contributed by Andrew Salmon, 24-May-2011.) (Revised by BJ, 21-Oct-2018.)
 |-  ( A. x A. y ph  ->  [ z  /  x ] [ w  /  y ] ph )
 
Theoremsb3 2355 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
 
Theoremsb4 2356 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 14-May-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremsb4a 2357 A version of sb4 2356 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] A. y ph  ->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb4b 2358 Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremhbsb2 2359 Bound-variable hypothesis builder for substitution. (Contributed by NM, 14-May-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  ->  A. x [
 y  /  x ] ph ) )
 
Theoremnfsb2 2360 Bound-variable hypothesis builder for substitution. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |-  ( -.  A. x  x  =  y  ->  F/ x [ y  /  x ] ph )
 
Theoremhbsb2a 2361 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] A. y ph  ->  A. x [ y  /  x ] ph )
 
Theoremsb4e 2362 One direction of a simplified definition of substitution that unlike sb4 2356 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  E. y ph )
 )
 
Theoremhbsb2e 2363 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] E. y ph )
 
Theoremhbsb3 2364 If  y is not free in  ph,  x is not free in  [
y  /  x ] ph. (Contributed by NM, 14-May-1993.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
 
Theoremnfs1 2365 If  y is not free in  ph,  x is not free in  [
y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ y ph   =>    |- 
 F/ x [ y  /  x ] ph
 
Theoremaxc16ALT 2366* Alternate proof of axc16 2135, shorter but requiring ax-10 2019, ax-11 2034, ax-13 2246 and using df-nf 1710 and df-sb 1881. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
 )
 
Theoremaxc16gALT 2367* Alternate proof of axc16g 2134 that uses df-sb 1881 and requires ax-10 2019, ax-11 2034, ax-13 2246. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  ( ph  ->  A. z ph )
 )
 
Theoremequsb1 2368 Substitution applied to an atomic wff. (Contributed by NM, 10-May-1993.)
 |- 
 [ y  /  x ] x  =  y
 
Theoremequsb2 2369 Substitution applied to an atomic wff. (Contributed by NM, 10-May-1993.)
 |- 
 [ y  /  x ] y  =  x
 
Theoremdveel1 2370* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
 |-  ( -.  A. x  x  =  y  ->  ( y  e.  z  ->  A. x  y  e.  z ) )
 
Theoremdveel2 2371* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
 |-  ( -.  A. x  x  =  y  ->  ( z  e.  y  ->  A. x  z  e.  y ) )
 
Theoremaxc14 2372 Axiom ax-c14 34176 is redundant if we assume ax-5 1839. Remark 9.6 in [Megill] p. 448 (p. 16 of the preprint), regarding axiom scheme C14'.

Note that  w is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 2371 and ax-5 1839. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.)

 |-  ( -.  A. z  z  =  x  ->  ( -.  A. z  z  =  y  ->  ( x  e.  y  ->  A. z  x  e.  y
 ) ) )
 
Theoremdfsb2 2373 An alternate definition of proper substitution that, like df-sb 1881, mixes free and bound variables to avoid distinct variable requirements. (Contributed by NM, 17-Feb-2005.)
 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  /\  ph )  \/  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremdfsb3 2374 An alternate definition of proper substitution df-sb 1881 that uses only primitive connectives (no defined terms) on the right-hand side. (Contributed by NM, 6-Mar-2007.)
 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  -.  ph )  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremsbequi 2375 An equality theorem for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 15-Sep-2018.)
 |-  ( x  =  y 
 ->  ( [ x  /  z ] ph  ->  [ y  /  z ] ph )
 )
 
Theoremsbequ 2376 An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.)
 |-  ( x  =  y 
 ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
 
Theoremdrsb1 2377 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 2-Jun-1993.)
 |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
 
Theoremdrsb2 2378 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
 
Theoremsbft 2379 Substitution has no effect on a non-free variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.)
 |-  ( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )
 
Theoremsbf 2380 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbh 2381 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbf2 2382 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
 |-  ( [ y  /  x ] A. x ph  <->  A. x ph )
 
Theoremnfs1f 2383 If  x is not free in  ph, it is not free in  [ y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x [ y  /  x ] ph
 
Theoremsb6x 2384 Equivalence involving substitution for a variable not free. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb6f 2385 Equivalence for substitution when  y is not free in  ph. The implication "to the left" is sb2 2352 and does not require the non-freeness hypothesis. Theorem sb6 2429 replaces the non-freeness hypothesis with a dv condition. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ y ph   =>    |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb5f 2386 Equivalence for substitution when  y is not free in  ph. The implication "to the right" is sb1 1883 and does not require the non-freeness hypothesis. Theorem sb5 2430 replaces the non-freeness hypothesis with a dv condition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ y ph   =>    |-  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph )
 )
 
Theoremsbequ5 2387 Substitution does not change an identical variable specifier. (Contributed by NM, 15-May-1993.)
 |-  ( [ w  /  z ] A. x  x  =  y  <->  A. x  x  =  y )
 
Theoremsbequ6 2388 Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
 
Theoremnfsb4t 2389 A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2390). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
 |-  ( A. x F/ z ph  ->  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph ) )
 
Theoremnfsb4 2390 A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ z ph   =>    |-  ( -.  A. z  z  =  y  ->  F/ z [ y  /  x ] ph )
 
Theoremsbn 2391 Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.)
 |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
 
Theoremsbi1 2392 Removal of implication from substitution. (Contributed by NM, 14-May-1993.)
 |-  ( [ y  /  x ] ( ph  ->  ps )  ->  ( [
 y  /  x ] ph  ->  [ y  /  x ] ps ) )
 
Theoremsbi2 2393 Introduction of implication into substitution. (Contributed by NM, 14-May-1993.)
 |-  ( ( [ y  /  x ] ph  ->  [ y  /  x ] ps )  ->  [ y  /  x ] ( ph  ->  ps ) )
 
Theoremspsbim 2394 Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
 )
 
Theoremsbim 2395 Implication inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.)
 |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps ) )
 
Theoremsbrim 2396 Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( ph  ->  [ y  /  x ] ps ) )
 
Theoremsblim 2397 Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ps   =>    |-  ( [ y  /  x ] ( ph  ->  ps )  <->  ( [ y  /  x ] ph  ->  ps ) )
 
Theoremsbor 2398 Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.)
 |-  ( [ y  /  x ] ( ph  \/  ps )  <->  ( [ y  /  x ] ph  \/  [ y  /  x ] ps ) )
 
Theoremsban 2399 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
 |-  ( [ y  /  x ] ( ph  /\  ps ) 
 <->  ( [ y  /  x ] ph  /\  [
 y  /  x ] ps ) )
 
Theoremsb3an 2400 Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
 |-  ( [ y  /  x ] ( ph  /\  ps  /\ 
 ch )  <->  ( [ y  /  x ] ph  /\  [
 y  /  x ] ps  /\  [ y  /  x ] ch ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >