| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aistbisfiaxb | Structured version Visualization version Unicode version | ||
| Description: Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| Ref | Expression |
|---|---|
| aistbisfiaxb.1 |
|
| aistbisfiaxb.2 |
|
| Ref | Expression |
|---|---|
| aistbisfiaxb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aistbisfiaxb.1 |
. . 3
| |
| 2 | 1 | aistia 41064 |
. 2
|
| 3 | aistbisfiaxb.2 |
. . 3
| |
| 4 | 3 | aisfina 41065 |
. 2
|
| 5 | 2, 4 | abnotbtaxb 41082 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-xor 1465 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |